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ABSTRACTGr 0 O

This paper deals with the development and analysis of well-posed models and compu-

tational algorithms for control of a class of partial differential equations that describe the
motions of thermo-viscoelastic structures. We first present an abstract "state space" frame-
work and a general well-posedness result that can be applied to a large class of thermo-elastic
and thermo-viscoelastic models. This state space framework is used in the development of

a computational scheme to be used in the solution of an LQR control problem. A detailed
convergence proof is provided for the viscoelastic model and several numerical results are
presented to illustrate the theory and to analyze problems for which the theory is incomplete.
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1. Introduction. During the past few years considerable attention has been de-

voted to the developmlent of smart materials and structures (sec [B]). One a)proach

to this class of problems is to use shape memory alloys as actuators in active contro]

designs. These alloys are best described by thermo-mechanical models consisting of

coupled (and nonlinear) hyperbolic and parabolic partial differential equations. The

development of computational algorithms for designing controllers for such systems is

an Immenselv complex problem and the subject of several ongoing research projects.

II addition to the obvious difficulties related to the nonlinearities. the basic thermo-

elastic coupling often gives rise to nonstandard mathematical models and leads to

several problems in developing computational algorithms for control. Therefore. the

computational methods for controlling a linear thermo-elastic system may be viewed

as a first step toward the ultimate nonlinear problem. With this motivation in mind.

we consider the problem of controlling a class of coupled partial differential equations

that describe the linearized motions of a thermo-rnechanical structure. The basic

approach is to combine approximation theory with state space modelling to develop

convergent computational algorithms for LQR control designs.

In this paper we consider the questions of well-posedness and convergence of ap-

proximation schemes for a class of abstract linear systems of the form

:-(t) = Az(t) + Bv(t). Z(O) =o (Li)

on a Hilbert space Z. The main concern of this paper is with a general class of partial

functional differential equations (PFDEs) arising in the modeling of viscoelastic and



therxio-viscoelastic systems, for example (see [BCLM], [BMC], [MH]), coupled

equations of the form

a2  a ar yf ) a 1~ ,XdUr y(i~x)= 7 y(t,x) + I (s)-y(t Ix)dI
012. ax L ax Pr ax

- -O(t, x) + b(x)u(t), (1.2)

a a2  '-O 02
- 0(tx) = K0 (t.x) -2Oo123t.X) (1.3)at aa A

where y represents displacement and 0 is the deviation from the reference temperature

00. Equations of viscoelasticity (e.g.. (1.2) with 7 0) have a special structure which

has been used by Fabiano and Ito [FI] to formulate a general well-posedness theorem

and convergence results. Observe that (1.2) vith ' = 0 can be written as

-y(t,,) = 7 y(t X) + g(s)y(t + s,x)dsl + b(x)u(t), (1.4)

or. in abstract form. as

y + A 7y + g(s)y(t + s)ds] f(t). (1.5)

where A is a positive definite, self-adjoint, closed linear operator on a Hilbert space

Y. In [FI] Fabiano and Ito consider equations of this form with singular kernels

(i.e., E E L'(-r. 0)) and establish well-posedness when the state space is taken to be

x Y x L (-r,0;D(A4/ 2 )). In this paper, we also consider equations of the

form (1.5). but the approach we take also applies to the thermo-viscoelastic equations

(1.2) (1.3) which cannot be written in the form of (1.5).

In Section 2 we develop an abstract franework and a generalized well-posedness

theorem which we apply to the t hermo-viscoelastic system (1.2) - (1.3) with zero
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boundary conditions and to the general viscoelastic system given by equation (1.5).

Our approach allows a singular kernel, and it also has the advantage that it does not

require explicit knowledge of the domain of All 2 in order to write down the state

space. This property can be useful in applications where All 2 is not a differential

operator. We also remark that our general framework can be applied to certain finite

delay systems similar in form to the infinite delay systems considered by Millcr and

Desch in [MD]. Miller and Desch prove well-posediiess for a class of equations in

which the kernel is completely monotonic.

Approximation of such systems generally consists of two steps: first approximate

the spatial variable (e.g.. by means of splines) to reduce the system to a hereditary

differential system on Rr , then approximate the "'historv" or -'memory- term (i.e..

the integral term in i.S)). In this paper we will use a variation introduced by Fabiano

and Ito ([FI]) of the averaging scheme considered by Banks and Burns ([BB]) for

the second stage. The idea of the "'AVE" scheme is essentially to approximate the

kernel 9(s) by a step function: partition [-r. 0] into .l subintervals and take the

integral average in each Lubinterval. Fabiaro and Ito show that the approximation

scheme converges for an L' kernel using a uniform partition of [-r. 0]. but they give

numerical results which indicate that a different partition using a finer mesh near the

singularity at zero yields much faster convergence. In Section 3 we modify the proof

given by Fabiano and Ito for singular kernels and a uniform mesh to include singular

kernels and the non-uniform mesh.
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Although we prove convergence in this paper only for the abstract viscoelastic

system, the proof we give can be modified to include the therm-o-Iscoelastic mnode].

In Section 4 we give some numerical results comparing the viscoelastic and thermo-

viscoelastic models.

WVe will use t lie followin~g not ation. For a function _g E L' (a, b; Z), we denote

by L'(a, b: Z) the set {f c L- (a, b Z) J )Ifs)112 ds < Wc.\e denote by the

symbol I~l(a. b: Z) the set, of all 11' funct ions wich vanish at the left end-point of

the Interval: i.e., II1ja. b: Z) { f E IV (a. b: Z) I f(a) =O}. Sin ilarly, Hj1(a b;Z)

{f E H' (a. b: Z) I f (b) =O0}. ForI a fun ct Ion x :[r. a) -, X. r. ak > 0, t he s vmb ol x,

for tE [0. a) represents the function x, : [-r. 0] X defined by x,(s) =x(t + s). If .4

is the infinitesimal generator of a Co semigroup T(-) on a Hilbert space Z satisfyig

IIT(t)jj 2 < AI.then we write A E G(.,113). Finally. zr, -"z means that Z'

converges stronlgly to z

2. WeiI- Posed ness. A standard technique for establishing wvell-posednf'ss of a

system governed by a PEDE is to cast the problem in the form of (1.1) and show

that A generates a CO semigroup on Z, for example, by mneans of the Luiner-Phillips

theorem (see [P]). \\'e will use the following version of this theoremn:

THEOREm 2.1. Let A be a closed denselY defined linear operator on a Hilbert space

1I. If there exists 3 E R such that (Ax, x) < 3 (x, x) for all x E D(A). and 'R(A0 1I - .A)

i s dense in H for somne A0 > 3. then A is the Infinitesimal grenerator of a CO SeInIgrolup
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T(t) on H satisfying liT(t)I < ezt.

2.1. A General Theorem on Well-Posedness. Suppose that X, V, E and It"

are Hilbert spaces, and set Ze = X x Y x 0 x Ii. Let S be a subspace of Y, and

suppose we have the following linear operators:

A0 : D(Ao) C V Y, A• D() C \ , Y,

G 'D(CG) C0 - Y. G2 D(G2 ) C Y - 0,

G3 "D(G 3 ) C 0. (' D((']) C I' --, ".

D .D (D ) I I 'I I, i. X -, lIV, 3 • S I- X .

Define .4, C and G by A A.40A1. C = AoC 1 and G = AoG 1 . and define Fe by

(F()I D(. 1), D(Gi). E D(C).
DjE Aix + GIO + Cw E D(Ao) "

Fe 0 = .40(A.1x + GO + Cuw).
U, /

Define AO by

S(.,S4n)D(G). 0 E Z)(G 3 ).
D(e Y (e0 Z weD(D), 0 D(Fe)

w G2Y + G30
jy+Dw

Finally, suppose that j is injective and, for .A C p(D) fl o(G3). define L \ • D(L.\) C_
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X - Y by

D (L.,) X E 7 T(J) (x, Aj-'x,(AI - G3)-'G 2 Aj'x,(AI - D)-i'Ax)T E D(Ae)}.

L x = A 2j-lx - Fe (AI - G3 )-lG 2 j-lx
I(AI - D)-iAx

\Ve are now ready to state the main result of this chapter.

THEOREM 2.2. Suppose

(1) i and j 1 are continuous.

(2) T (A) is dense in X. .5 C D(G 2 ) and S is dense in Y. D(G) nl D(G3 ) is dense in

0. and D'C) 0 D(D) is dense in W.

(3) ,5') is closed in X.

(4) Fe. G 3 and D are closed,

(5) fory y .'. HIG2YI1 < jIJyI.. for some : > 0,

(6) there exists 3 E R such that (Az., Z)z < 3 (z., z)z for all z E D(Ae).

(7) there exists Ao > 3. Ao E p(D) n p(G 3), such that 7Z(Lo) is dense in Y. and

(S) (AoI - D)[D(C) n D(D)] is dense in V, and (AoI - G3 )[D(G)n fD(G3 )] is dense

Then A0 is the infinitesimal generator of a Co semigroup SE(t) on Ze satisfying

IISE)(t)jl < 6'

PROOF: SetD= D(A)xSx(-D(G)lD(G3))x(D(C)nED(D)). ThenDC DkAe)and
X,

D is dense in Ze. so D(Ae) is dense in Zq. For n = 1, 2..... let ( C, CD(Ae). and
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suppose and A- as n --- oc*. Then
supos 0w IV h ,n h

tUn /W \h~ /
Y, S and j'yn = , -- P. Since j(S) is closed, there exists E E S such that j=

But j is bounded, so 115- yf < IIJ-'- - pi + j, - Y11 - 0 as 72 n ',Z.

Therefore.y = .V: i.e., y E S and jy =,.Now. (, O ThFe), (,) (X)
It', IVIL

and Fe (On = -' as n , c. Since FeD is closed. 0 E ED(FO) and

F® ( 0 = c'. Since jy, j y and i is continuous, we have ijy.y, 1jy. We also
U,

have iJY, + Dwn , h. Thus. DzvC h - ijy. But D is closed, so w E D(D) and

Dw = h - ijy which implies that ijy + Dw =h. Next. 0,, -, 0. 0, E D(G3) and

G2y, + G 30,, = - ". By (5), IIG2(Yn - y)ll0 < k jlJ( n - Y)JIx k i1JYn - JYIyx

0, so G2y- G2y which implies that G3 0n - G2y. Since G3 is closed., 0 E D(G 3 )

and G3 0 = - G2 Y. or ") G2y + G30. Therefore. Ae is closed. Finally. let

( ,_ (AoI- A0): i.e..
h

(p, Aox - JY)x + Q.Aoy - F®

+ (', (AoI - G3)0 - G2y)o + (h, (Aol - D)w - ijy)w 0

for all((AL - )'-j- iX) C

for all y E D(Ao). Let x E D(LAo). Then ( o - o E
w )(AoI - D)-17,Aox

D(Ae), so 0g\j-'x - Fe (Aol - G,)-'GA-'x) ) (I,. Lx), = 0 for
(AoI - D)-'?Aox )/.

all x E D(L.\o), which implies I ' = 0 by (7). If - = 0, y 0 and 0 = 0, then



(h, (A0l - D)w)w = 0 for all it E D(C) n D(D), and hence h = 0 by (S). Now for

x E D(A), ( E D(Ao), so (,,Aor)x = 0 for all x E D(A). By (2) this implies
0

that p 0. Finally, for 0 E D(G) nD(GC3), ( E D(Ae), so (,4A 0 I - G3)0)E 0

0

which implies that 3 0 by (8). Therefore. 7.(AoI - . 4e) is dense in ZO, and this

completes the proof. I

\\e wish to apply this theorem to thermo-viscoelastic systems (equations (1.2) -

(1.3)) and to the abstract viscoelastic system (equation (1.5)). Before we proceed

with any examples. however, we will make some general comments about the kernel

function g and the space 1'.

HYPOTHESIS 2.3. The function g satisfies the following conditions.

(1) g E L'(-rO).

(2) g < 0 and g' < 0 on [-r. 0). and

(3) a - 7 + fo .s)ds > 0.

Set g.,(s) = -Ig(s). and suppose the space X is given. We will take W to be the

space L'(-r,0:,V) with inner product given by

(11I 1 ,IV2 ] ga (.S) (Ti1 (S), W2 (S)) x ds.

Define the operator D by D(D) = Hn(-r,0: X), D = The following lemma is

proved in [FI]. Since it is the crucial step which allows a singular kernel, we reproduce

its proof here.
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LEMMA 2.4. The operator D is dissipative in W.

PROOF: For zv E D(D),/010 0
(D '.w)= go(S) K w(s)a(s) ds = go(s) HZL(s)Ilx ds.

Let c > 0 and consider

Sgos S lW(s)Il ds

1 I.J 1 r [

(- ) I (- ) - 7 (-r) llz(-r)lI' - - g'(s) Iz,(s) 11 ds
-r

Since w(-c) =w(o) - f 0 Dw(s)ds f0 Dw(s)ds, by the Cauchy-Schwarz in-

equality

I(-)I. f g.(s) f g(s) IlDiv(s) x ds.
o ._0 go ( )

Note that (-c) ds / -ds< c. Thus, we obtain
N( g,(s) - _ go (s)

I( < : go (s) IIDu.(s)K112 ds

for all c > 0. Therefore (fw),, = lim 1o I( < 0. I

For h E IV, if w(s) = es fS eah(or)da, then w E 'D(D) and (I- D)w =h. Since D

is densely defined, D generates a Co semigroup of contractions on U" by the Lumer-

Phillips Theorem. In particular, D is closed, and A E p(D) for all A > 0.

2.2. A Therlno-Viscoelastic System. We consider the system governed by equa-

tions (1.2) - (1.3) with boundary conditions given by y(t, 0) = y(t, 1) = 0(1.0)
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O(t, 1) = 0. If we set w(t, ;, x) = y(t, a')- y(t + s, x) and use g, as defined above, then

we can rewrite equation (1.2) as

a2  0 0 +
' X)= .-[-Y(t, X ) + 9 .(s)-w(ts'x)ds -20(1) +-b(x)u(t).

Define the spaces X. Y and 0 as follows:

X= H'(0. 1) wit h1 (Xi. x2)x =o " a"2,

SL 2 (O 1) with (Y1 Y2) 1j YiY2'

, r1

0= L 2(0. 1) with (01 02)o 0o 010 '

Set Ze X x V x 0 x IV where I" = L2(-r.0:-V) is as above, and let S C Y be

given by S = H' (0, 1). Define the following operators:

D(Ao) =H'(0, 1). AoY -y' E Y.

D(A1 ) ', Al= a' E = ',

D(G) =E), G O = -0 I

D(G2 ) H(0. 1). G2Y = -0OoV' E 0,

D(G3 ) = H1(0, 1) n H 2(O,1), G30 = KO" E 0,

D(C) = CI, C fw jg,(s)'(s)ds E Y,

[2'x](s) x C- H = S -- .g = Ho is the identity operator.

With the above definitions, we have

D(A)= I/'I n H , T(C) = L'(-r,0; D(A)), D(G)= H(O, 1),

10



and the operator A® is given by

X y EII4 .O0EII~f I I 2 .
Ck tf , - E t r 11(X 20 + forg.(s)w,(s)ds E II' J

-OoY + O"

We now verify the conditions of Theorem 2.2.

(1) Clearly i and j-' are continuous.

(2) Clearly D(A) is dense in X, S C D(G 2 ) and S is dense in Y. D(G) m D(G3)

D(G 3 ) is dense in 0. and D(C') n D(D) H' (-r.,O:D(.4)) is dense in IV.

(3) Since j(S) = X. j(S) is closed.

(4) \Ve already know that D is closed. It is easy to see that G3 is densely de-

fined and dissipative, and for any E E 0 there exists 0 E D(G 3 ) such that

(I-G 3 )O = (see [K, p. i471). Thus. G3 is closed. Let 0 E ED(Fo).

( -- (0), and F® 0, =,, - V, Observe that F® (,n =W\ nW Wn W

Sdx, -0 + fg(s)wn(s)ds . Now., r x in X implies that x' -,x

in Y. 0, 0 in 0 implies that 0, 0 in Y. and U',, U7 in IV implies that

f°_go(s)w ()ds -,fgo(s)w'(s)ds in Y. Thus, x' - - 0

- ' - 10 + fo go(s)w'(s)ds in V. Since A0 is closed. F® is closed.

(5) It is easy to check that llG2Yfl' = - -2 yIll ,.- Set k- = > 0.

11



(6) For z = (x,, 0, w) E D(Ae),

(Aezz) a yx' + oc x' o -+ j (s)w'(s)ds y

+ +'I(-2700y' + KO-") 0 + go(.s) y',' + (Dw, w)w.

00 Jo

= (G 30, 0) - (DW, ')w K 0

since G3 and D are dissipative.

(7) We will take Ao = 1. Let x G D(L1 ). If we set w(s) =( - e5)ix, then

(I - D)w = i.r. so (I - D)-'i=x (1s)Ix 1 -')x. Note that

Sd (, .20 jo 2
LlIz" = X .. . . + -- (i - G3 )-l.r' + I ,g (s)(1 - C )xdsx d- +r

= - -- ax' + 200 - G 3 )-x'

odx a

where at\ a - f 0  -()(1- )ds = - C A, > 0 for A >

_, L s)H(I f-~~).ss 0frA

0. Since X C Y we can think of Li as being defined on a subspace of Y.

Observe that D(L,) {y E I11(0, 1) 1 aly' + !--( - G3)-ly' E H} is dense

in '. Define the operators T and T2 as follows:

)(Tj) = Hl(0, 1), T,y = y',

)(T2) = H11(0, 1), T2y = y'.

Note that T, and T2 are adjoint to each other. With this notation we can write

L, as follows:

L,=-aT [ 1i±20I0 3Y T2.Li= I- -T[[, 1 +  -0°(I-- - G,)-

12



Since G; = G3, we have [(I - G 3 y-']" = (I - G3)-'. Thus,

Lo = I - T; C11 I + G -3
I-- [ol ±~L0(1 - 11 C3)

=I--T, [oi + -O(I-G 3)- = LI;

that is, L, is self-adjoint. Now, for y E D(LI),

(LIy. y). (y. y)).- n -( +, (I-aG)-I' Y

1Iy112 + ( I y' + 2 1- G3)-1' '  y'
V fo(C

-ly=l2 + a] 11y1 2v + 12 °  -200 II,-I,

since I - '3 >_ 0 implies that (I -G 3 )-' > 0. Thus l is one-to-one. Hence

by Theorem 13.11 in [R], 7Z(Ll) is dense in Y.

(S) Since D(G 3) C D(G), we have (I - G 3) [D(G) n D(G3 )] (I - =3)D(C 3 )

0 from (4). Next. for h E D(C), if we set w(s) = c' f: c-h(a)du, then

w Hl(-r,0;D(A)) = D(C) n D(D) and (I - D)w = h. Thus, D(C) C

(I - D) [D(C) fl D(D)], and D(C) is dense in IV.

Since (1) - (S) hold, Ae generates a Co semigroup on Ze.

2.3. The Abstract Viscoelastic System. Next we wish to apply Theorem 2.2

to equation (1.5). Since the space 0 corresponds to the heat equation (1.3), we

first formulate a version of the theorem using only the spaces X, Y and I'. Set

13



Z = X x Y x 11", and define the operator F by

-D(F) { () E X x IV X E )(A 1) .. w E ED(C 1 ), Ax + Ci z E D(Au)}

F( x A0(AlX + Ciw),

define A bv

EI(A) xy E y E S,w E D(D),
D (A) = E)C Z ()D( x) F

WU Wf(x) l
A y = F x

, jy + Dwu

and define L\ by

E(!,\) = jx E R-(j) (x.Aj-1 x.(, I - D)-'iAx)T E -D(A)}

LAx= A'j'-x - F (AI - D)-'iAx -

\Ve have the following special case of Theorem 2.2.

THEOREM 2.5. Assume that all the hypotheses of Theorem 2.2 except those involving

the space -0 ,old. In addition, assume that F is closed, that A satisfies the inequality

in (6), and that there exists A0 > 3, A0 E p(D), such that l%(LA.) is dense in ). Then

A generates a Co semigroup S(t) on Z satisfying IS(t)II < e;3.

PROOF: Let 0 {O}, and define G1 = 0, G2 = 0 (with D(G 2 ) = Y) and G3 =

0. Define D(Fo) 0 E X V x ) E D(F) F (0 =F x

and define Ae by D(Ao) = E Zo y C D(A) Aozo = TAT-'z

14



where T Z - is given by T ( y (and 7'-1  Z- - Z is given by
UU,

T- 1  = y ). Note that if we define L,\ as before, then D(L,) = D(L)

W /

and Lx \ 2 -'x- (A O)_-iF 0 A2 -'r-F ( AI -DX).

It is easy to see that (1) - (8) of Theorem 2.2 are satisfied, so Ao- generates a Co

semigroup SO-(I) on Ze. Set S(t): = T-Se(t)Tz. Then S'(t) is a Co semigroup on

Z whose infinitesimal generator is A. I

We wish to apply Theorem 2.5 to the equation (1.5). If we set iav(s) y - Ys and

substitute into (1.5) we obtain an equation of the form

+ + 0 =f(t). (2.1)
-r

We assume that A is a closed, densely defined, positive, self-adjoint, injective linear

operator. As we shall see in the example considered below, these assumptions are

easily verified in actual applications.

A standard technique (see e.g., [FI]) for reformulating (2.1) as an abstract Cauchy

problem is essentially to set X = D(A'/ 2 ) where the inner product on X satisfies

(aX 2)X = 11/2,, 12Xj) and to take the state space to be

Z = ,X x Y x L 2(-r, 0;,X).

The approach we take here is similar but it allows more flexibility in the choice of

state space in that X is not necessarily contained in V, but X will be in one-to-one
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correspondence with a subspace of Y. \Ve remark that explicit knowledge of the

square root of A is not required; it is only necessary to know that it exists.

With this discussion in mind, let S be a subspace of V containing E)(A). and let

a(..-) be a symmetric bilinear form on S such that U(Yl,Y 2 ) = (a4yly 2 )Y whenever

yi E D(A) and Y2 E S. Let X be a ltilbert space and j : S , X a bijective linear

operator such that j 1  X -+ Y is continuous and (xl,X2)v = (j'-rX.j'-x 2).

Define A : D(A) C N -X Y by

D(A) {, E X' jx G D(A)} oj~

With W as defined above, set Z X x Y x IV. Then z(t) E Z satisfies

d
- z(t) Az(t) + col(O,f(t),O),
dt

where A is given by

D(A ~~CS, wtv D(D).
D(A)C XZ (xf, 9g(s)t.(s)ds) E 'D(A)f((2.2)

w )j y + Dw

TjIEOREM 2.5. The operator A generates a Co semigroup on Z.

PROOF: Let A, D and j be as above and consider the operators:

/0
D(C) = w, Ow ] g,(s)w(s)ds;

i: N -1 1V given by [ix](s) = x.
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In order to apply Theorem 2.5, we must show that A can be factored as A = AoA 1.

Since .4 : D)(A) C V -- Y is positive and self-adjoint, it has a positive square root

i/2 . Define A0 and .4 by

E)(,A0) = 23(,4/l), A0 =-aA / 2

.(Ay = {x E X I I-'x E D(A 1/ 2 )}, = 1/2j .

Clearly, A = A0A1 . Set C1 = A 1 C. We now verify the conditions of Theorem 2.2.

(1) Clearly i is continuous. By assumption, j- (j) = X - is continuous.

(2) Since S D T(.A) and .4 is densely defined. S is dense in V. Suppose ? _ 'D(A).

Then for all x E D(A).

0 = (X. ?). = ('X. 1 ~ a I _l*I

which implies that y = 0 for all y E D(A). But .4 is self-adjoint and

one-to-one. so R(.) is dense in Y ([R., Theorem 13.111). Thus j 7 0 which

implies that 2 = 0. Therefore, D(A) is dense in X. Finally, D(C) n El(D)=

D(AC) al D(D) H'(-r, 0: D3(.4)) which is dense in IV.

(3) Obvious since R(j) = X.

(4) We already know that D is closed. To show that F is closed, let (x-) E D(F)

for n = 1.2. let (s and F(X, y -* y as n ( ( ). Set

.. = X,, + f Or (s)wn(s)d) and (x + f- -(s). Then

E, D ) and -a , = F( ) = y - y as n -+ oc. Since 4 is closed and

- 11, < IIJ- , - Xllx + (f go9 (s)ds) 1/11,n - U',lI1I - 0

17



E D(A) and -aA = y. But this implies that x + f 0 g9(s)w(s)ds E D(A)

and A (x+ f ' g,,(s)wxv(s) ds) y, so F is closed.

(5) Does not apply since 1Z(G 2) C 0.

(6) Let y E D(A). Then, using the definition of (.,.,

(A (i, = (jy, x)X + (4( + jo g(,,(.s )ds) ,X
tL W w Zr) ,

+ j g0 (S) J+ -u'(s), w(s)) ds

g.(s) K zt(s), '(s) ds < 0

bv Lemma 2.4.

(7) Again we take A0 = 1. For x E D(L1 ), ( IY x) E D(A), and
((I - xcs)x

( /~0
L rx - A x+ jg(s)(1 - S)xds =j-ix - a1.

where ck, > 0 is as defined above. Define T by

D(T) = {y S I Jy E (,)}. T = I +aoaA

It is easy to see that D)(A) = D(T) and 7(T) = 7(LI). By the Cauchy-Schwarz

Inequality, for y E D(T), JJTyl yl l J ( ITy,y) j = 1jy1 2 + a KAy,] y _ jiy]j 2

which implies IlTyII Ilyll, and so T is one-to-one. Also. T" = T so 7Z(T) is

dense in V.

(8) The proof that (I - D)[V(C) nl D(D)] is dense in IV is the same as the proof

given in Section 2.1. 1

18



EXAMPLE. A viscoelastic shaft with tip-mass.

Consider a viscoelastic shaft of length I fixed at one end and with a tilp-imass at

the free end. The equation describing the motion of the shaft (see [BMC] where tlhe

kernel g(s) is assumed to be in Il) is

1- y(t,x) = -[1 (t, x) + g(.) y(t + s,x)ds + b(x)u,(t). (2.3)

while the boundary conditions are given by

(t.O) = 0. (2.4)

a2  a, [0 a
I,-y(t. a= . )+ 1 (s)-( + s, I)ds+ (t). (2.5)

Here y is the angular displacement. 7 is the product of the density of the shaft with

its polar moment of inertia. 7 is the product of the shear modulus and the polar

mriiient of inertia. Jr is the moment of inertia of the tip mass, and the delay r > 0

is assumed to be finite. Let Y R x L2 (0, 1) with

Then (2.3) (2.5) can be written as[ 0]
yi + , [Y + y(s)ysds] = f(t)

where f(t) - b ( ) . and

-D(A) {() E I E e H(0.1) n H 2 (01). t,(1)1



Clearly, D(A) is dense in V. Let ()E )D( ). Then

22
" >0.

>- 2Jml± +0.l2

2

Thus, A is positive and 2 ,, 1 2 ( - so

(and A-' is continuous). Let (C) D(). Then

-f1 ), 2 = I( O) 2(l) . ... ' ,,o, , ,

' r ' 1

so .4 is symmetric. Let " Y. Define t(x) = a'( )dc + lm5] dr.

Then (('I/))E ZD(.). and A (t-1)) (i), so 7Z(A) Y. Therefore, by

Theorem 13.11 in [R], = A. Finally, D(A- 1 ) = RZ(A) = Y, so .4-' is closed,

and hence A is closed. Now let S = E Y OE HL(0,1). v;(1)= ", and

define (,a aj ' for E S. Then, S D D(,) anddei e C,a '2 0' 2 L / L' 2-

(YI-,Y2) = ,AYI - Y) whenever yi C D(A), Y2 E S. Let X = HI(0.,1) with

(Xlr2)X= afax'1 x', and definej S -X N by j(\'()) = t Clearly j is a

bijective linear operator. and

(X I -X2).y = CIjIX'X2 = 0' (X~() 1 (1&) C' a]-~i'I2

For x E X, IIJ-'aj Jm1 2 ) +. foj X2 2( oi IxIX. Th 's, j-' is continuous.
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Now, define Z = I(O,l) x R x L 2(O,l) x L2(-r,O;h1'(O,1)) with

(() + ir<Y2 + , 0 2 + j )(s) ( i) d)xds.

(W)

and define

D(A) Z w C RH)(-,0; H/j0.1)), L

) ('(x) +- f 0,g.(s)aw(s,x)ds) E I1'(Ol)

A , (s) 1 o f ( w(s. Id]•

k'(a)+ f+rg (S)-w(s, x)ds)

The operator A generates a Co semigroup on Z by Theorem 2.5.

3. Approximation. In this section we consider the problem of finding approximate

solutions to equations of the form (1.1). Let S(t) be the Co semigroup generated by

A. We construct a sequence (Zn, P2,An) where Z n is a finite dimensional subspace

of Z, Pn is the orthogonal projection of Z onto Zn, and An generates a Co semigroup

Sn (t) on Z'. We then show that S'(t)Pz-- S(t)z as n --4 oc for all z G Z using

the following version of the Trotter-Nato theorem which follows from Theorem 4.2 in

[P, Chapter 3].

THEOREM 3.1. Let .4 E G(.,1.3) be the infinitesimal generator of a Co semigroup

S(t) on a Hilbert space Z. For n = 1,2...., let Zn be a finite dimensional subspace

of Z such that Pnf --- I as n -- c where pn is the orthogonal projection of Z onto
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Z'. Suppose

(1it) .4 E G(1l, r3) is the infinitesimal generator of a Co semigrouj) S'(t) on Z" for

n = 1,..., and

(H2) for all z E Z. (AI - A' )-YP"-z - (Al - .)-z as n -, c.

Then for all .z E Z, S'"(t)P' -- S(t)z as 71 + c, and the convergence is uniform on

bounded t-intervals.

We would like to construct a convergent approximation scherne for the thermo-

viscoelastic system considered in Section 2.2. Nevertheless, for the approxination

scheme and convergence proof presented below, we restrict our attention to the ab-

stract viscoelastic system (equation (1.1)) for which the operator A is given by (2.2).

The convergence proof for the complete thermo-viscoelastic system involves a modifi-

cation of the proof we give here and can be found in the thesis [L]. This modification is

rather technical. and vet is a straight forward extension of the proof we present below.

Therefore, in order to conserve space we present only the proof for the viscoelastic

model. If we define the operator A 0 : D(A 0 ) C X x Y x Y by

D(.4o) {x ) E X x Y x C D(A), y E

'40 (a) ('Y)y A

then we can write A in the form

A () (x A x +jJ(I (l)) II J2 + -

22



which suggests a two-stage approxmation of .4: We first approximate .40 by discretiz-

ing the spatial variable, typically by means ef spline functions. We then approximate

-- by discretizing the delay variable. In this paper we will use an averaging scheme
as

for the second stage. \Ve follow the construction given in [FI] except that we do not,

require a uniform partitioning of the interval [-r, 0].

Let us now proceed with the first stage of the approximation. Define the bilinear

form o(', -) on X x S by

ca, ( (2)" .' )) = 0a ( II -, -X2) - Ca (j'-X1, Y2)Y~ 1 Y 72

where a is the bilinear form on S discussed in Section 2.3. Observe that for (xi ) EOili

D(Ao) and (X2) E _V x

.0( 1l X22  '7O0  ,: .X2*

Now for each positive integer N. let X and Y' be finite dimensional subspaces of X

and Y with Y' C S, and define WA = L 2(-r. 0; XN). We define .4,N : .¥x Y "

Xx Y N by restricting a0 to X x y-; i.e.,

(AN UN' X x ,0 (utr, vN) for u", vN .¥x y,.N

Now set Z =  X y x IV' and define AN : D(AN) C ZN _ ZN by

D(.A) =X '¥ x }"x tf](-r. 0:;NA).

VI" X y N X I- I_ 0. .)
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For each positive integer A partition tlie interval [-r, 0] into subintervals [tM, tM 1j,

j 1,2...,. , where

Al AJ Af Af-r= t M  < tlf _-I < "". < ti < to  = 0. (3.1)

We will say more later about how the tOf are chosen. Set 0"1 = t_ - tm for j

1,2 ..... 1, let -,j denote the characteristic function of [t J-,t11 ) forj 2.. I.

and let \ denote the characteristic function of [tj t ,O]. Let B;1(t). i 0.1 .... 11

be the usual linear spline functions satisfying Bj-(ij") = 6,,. Define the finite dimen-

sional subspaces "°  and I'' '  of I' by

{~ " a;", a;", E .

{w E H7  = 7 bB ' , bj. af (E  \.Ni=1

Define b,, • If.' M  -- 1 ,'
.'A by bDXMw,'M =Z EM 1 1 (b Afl b Al) whereb~i!Bi~f b~t_. b' _.1) I/ ,

WN,. <B;" and Of = 0. Define the isomorphism iN7M j VNf 1
, NAf

i=
by iN'"MwN 'M = .ZM= b~il ~i Now define D\'AI • IVNAI 1yYM by DA' Mf

bD\A (i' ) 1. To complete the approximation, set Z - XN x y. x W , f.

and for zv\' = (X.'V. ,, w.rA )T E Z NA" define

AX. zN. = A ,o I.) + -- 9_'(_ w f (S)

I .yN + DNv.! WN.A,,N
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Al
If wN 'M E Z wu ,A1 then

i=I

-w

" W
A~ ~~ 0 '" '"v " y N/

% f ,,,A I MIt
•N W. Al- - ,

where (g)' = ,1 go(s)ds.

In order to prove convergence of this approximation scheme, we must ;rpose con-

ditions upon the spaces X " and ).." and upon the prtitions of [-r,O]. Thus, we

make the following assumptions:

(Al) Let PF-' and Pj> be th,' orthogonal projections of X and Y onto X- and Y.

respectively. Then P Y -- Ix, and Pi) ..A_ Iy where Ix and Iy are the identity

operators on X and V, respectively.

(A2) For each positive integer .l let I-I'  {R]'V j 0.1 ...... 1l} be a partition of

[-r, 0] satisfying (3.1), and set A" - {11.2 ..... M}. Then there exist positive

constants fl, f2 and C independent of .1l such that AM = ,\M' U .\ N where

, = E :A\ 1 <_ rA-(l+f')/2}

If jE A'M. then (g)- < C-- and A"! contains at most 1I1 - 2 elements of A"I.
2 j ~- .1l

Furthermore, a AfI(g. )AI _ < ) 1 A1 for j 2,:3 ...... 11, and if j C A"', then

1,2 ...... - 1 E

EXAMPLE 3.2. Suppose t'f' - jr for 0.1 ...... Mf. Then o' = -- for all
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j e AM, so (A2) is satisfied with 1 = 1, 2, C > 0 arbitrary since A. = 0 and

<

EXAMPLE 3.3. Let C = 0 g(s)ds, and suppose that the 0]1 are chosen so that

(g,)]- - forj 1,2 ...... 1. Then it is easv to check that for c ( -2 ! the

partition H" satisfies (.42) for all positive integers .1.

We will refer to these partitions as the 'uniform mesh" and the *'non-uniform mesh,"

respectively. The non-uniform mesh of Example 3.3 is the partition suggested by

Fabiano and Ito in [FI]. The convergence proof we give below is a modification of the

proof given in [FI]. The major difference is that we must handle each estimate in two

parts: one where the length of the interval is small (in this case our argument is the

same as that of Fabiano and Ito), and the otb 'r where the integral of g is small.

Let Px.f denote the orthogonal projection of Z onto Z-'A!. In order to apply

Theorem 3.1. we must show that P> - Iz as .V, .1 - . For z = (X.y. W)T E Z'

, ( P. Y 4 , W here P,-,. is the orthogonal projection of 11' onto

I.vA"Al. Since we assume (A1) it is sufficient to shoN that Pi%* A 6

V WLEMMA 3.4. For all h E W1. P I'-h -+ h as N,.1 A! c .

PROOF: For u, E IV and t E [-r.0], set Wu,(t) = P.,Yw(t), and define w'\ ' by

Z = (t '1
1  (t). For ut' E D(D 2 )

i=lI

IZC- W"' III,, K 11' - z" II, +*~ 11w z1\'A III,

where the first term on the right-hand side tends to zero by the Dominated Con-
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vergence Theorem. We write the second term as 1wN - wN',f12 = S, + S 2 where

S, ] go(s) d,'(s) -,LL'(t-, 1 ) sfor j 1 1.2. Following Fabiano and
•EA ' t

Ito (but replacing r/AI. the length of each interval using the uniform mesh. by

7,1/1 (1 )1 ) we get

< wr I I D )2  1 ( --- 0 as .1 DA .

Now, for s 7 %r 0].

Ila 0 D( c 2 = 1 D d

X J (s)s ) __ I_ V

_0 , ) ID (C)I' d4 < r IDa,..

Thus.

-52 2 ~jf ga(s) [hw,()112 + w(;' 1 ) ds
iEAYk

2

4< ID7' wII. < 4rC IIDwlIK. *-0 as 11 cc.
_ g( 9g, a r).

Hence, for u.', D(D 2 ), a, ' - Pi:', - 1 + pNI( - a, <

2 Iltc- ,"'w --" 0 as N. .- oc. Since D(D 2 ) is dense in Ii' and pf < 1.

-0 as NX.M-*x , for a] IIlE .I

From Theorem 2.5 we know that AEC G( 1,0). In order to show that A\,', E G,(1,0)

for all N, .!. it is sufficient to show that A, v. is dissipative in Z '\ -'' since ZX\ '-J is
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dA ( N ),Af Al
finite dimensional. Let z = y with U"'N M = w'. Then

\uNM ,I1

yN

+ /go(s) jN+ \ W, WM \- . Al 1; d.

) -r \JY/ h/i

=,I Nf Nf) =(g 70-' + v

=1

< If I Af$ Ih. - I [ -1

Al. 
If i "2-

AK W aM -IVA/ iIK

<+ 
Al

z=1 I

1 [F  i+1; (92 1 W w f 112 (g°)XI'] < 0

Zv 1 1CL i=~

where we used the Cauchy-Schwarz Inequality and the inequality 2ab < a2 + b2 . and

(g'A~~aAjK (g )Mlck
from (A2) the fact that (g ;+i':/a -_< /< for i= 1,2,....I- 1. Thus, we

have established the following result.

LEMMA 3.5. If A N. is as defined above, then A v'M E G(1, U) fui all A", fl.

All that remains to be done in order to establish convergence is to show that (Al -

A ' )f P, -- , (AI - A)'z for all z E Z. For ReA > 0 and z = , consider
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(x
the equation (AI - A) = ( ), or equivalently,

u'

Ax - jy = p, (3.2)

Ay - A x + j g(s),(s)ds) = V, (3.3)

A,' -jy - - h. (3.4)

From (3.4), z'(s) = fo &.\(s_ )(jy + h(.c))d , and from (3.2), jy Ax - p. or z =

,\j-'x -jp. Substituting into (3.3) and using OA as defined above and the fact that

fJ, A e s-Od = 1 - Os we obtain

A 2 j-'x - A oAr - g,(s)(AI - D)' [p- h(s)] ds =." + Aj . (3.5)

If we define A(A) = A2 j_' _A (7 + fo eAsg(s)ds) A2j ' - Q,.A. then for x E

ro
D (A),

:0
A(A)x = z.' + j-% - A g,(s)(AI - D)-[: - h(s)]ds.

Now, let Piv:A'z = and consider the equation (AI - AN' "M) p.,1Z

If we define ' YX .-, b ( 4 NN, y _o (j " y"'), then it

is easy to see that A,% (') fo,. , ( ), . Y Thus. we have
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the equations

Ax -jy - (3.6)

:=1
Ay,%' - A'%'A for i =1.2f. . (3.7)

Aw II Oral V w 1 wl 'lfr7 . ...... 1(38

l Om,,here zS.-" = A l" and t, - £ M,"," Froi (:3.S).
=1 i=1

(+-4T',, <" -- w>1<_ + Jya" t-;'

or

U" = (1 + o"A) -' [, '_., + o;" (jl.f + ;")] for i 1 2 ...... I.

where u(" 0. B- induction. w"lf .From
k=1 Il

(3.6). jy. Ax -j which implies yV = Aj- - I .\ .Substituting into (3.7)

we obtain

\2j-lx -A" xV ' i (ga);'! := [I'Jt (1+± <itA)-I alx.\V)

A

S +A ft (1 + A (X h) (3.9)-N+Af(-)x +' -E(o.4 " (" (i-( + o YA)-)ol

Alf
Ahen sinc E~(g0 );" %f h (3.9)

1k= =k

B i t A 1 + -H ( + o"A) Define
k=1 1=k 

k=1

_ ...(a = b - - ." 1 Z ,)Al 1 -(1 + c .'
z~l k=1

Then, since ( ); "

A~.(A)  A 7\j l~ + 9(s) (,,ds (3.10)
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ih where

C . (A,, s) (I + o A Ax -
i=l l

Let (AI - DN"!)-1 (IN - hN,,M) = Z 'x"\2 t . Then
i=1

Af AtV f.N'AI\\~' ~M N?'[M I I ~ ,
,N, [=f ik 1 f )

which implies N- = A - -t (;'i1 - ;") for i 1, 2 ...... 1I. Thus, =

(1 + A )- + a"("-')]. or. by induction.

k=l !l=k

-- r i=1(1 l
! / 0Now. J- (S)Z~"; ~ 0 ;'' so

I Jga(s) (AZ - D'") -' (9"N - ; 1 "N"M) ds

1=1 (V - h ) . (3.11)

Therefore, from (3.9). (3.10) and (3.11) we obtain/0
" if -+\)'jty A\ - 4\'j g,(s) (\I - D" N).( " -hN"")ds. (3.12)

In order to complete the proof of convergence, we must show that xN + x, yN --4 y

and w N Af -+ w as A". If - oc. First we need the following lemmas.

LEMMA 3.6. For A > 0, (AI - D"' Pw'i"h (AI - D)-'h for all h E IV.

PROOF: Let w = (AI - D)-'h and w\M = (AI- DA'A - ' P'.h' Set iv' _

(iN'M)-Ilw N ' t and take ,A - Pt'' (Dw)d . It now follows that

11iK MAf (i"NA - ""') l,, < A P 't (, -Ni\ fU7\ - ) . (3,13)
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Now,

where

1 
2

< - D PXM (D\) -*0 as X. get

by Lemma 3.-4. If we set D ) - O thn we get

A I /[ A1
2 '- c. t - d _' 4H\ .,I _ .'. .. ,/l 2 ,, '~A~ ( ~ - -jjU - :. LdoIf I,,II¥ (S - +")'

To estimate the term S, we again follow Fabiano and Ito (replacing the term r/3I

by r/.M( 0)1 ) to get S, < +IDwlj 1. -* 0 as .1l -- c. Define the norm 1I1k

on I" by s = f w( )I" ds. Then P (Di) 2

I ,ds of f 1, 1. Forv I
t=I 31 t=1

2 [0, <1 0 tt'\H 1 lwII1vI[.'lr X _q,(,11 , r r o IIg )l! r) Iu l

and so. for all j,

2 < <.,.,f(Du-)<<Dw
j,1 .'1A IV E v --_ g _(-r) '

Thus. for s E IA, t"), ! 2. - ,) < (a 2 IC1 2 < 2r IDull2
I AIi - g0 (_r)

Hence,

r / .I ,Il Iw'll C

- 2  IDu-1.J'c, .' < --4 0 as l -- 3,
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aNd so t- N - 0 as N, 11 - . Thus. from (3.13) it follows that

Wi - W

+,, . . '  w "." ,"." I,.-- 0 as A" I! -- C. I

LEMMA 3.7. For A > 0. j Y(,) ICAS -cA,,f(\.)I ds -- 0 a- Al --+ oc.

PROOF: By definitiull of t'(.\. )

(A..,,) I d- 'I ., , z gj, ) C' - J (1 + o A) "
r J--- " t;

t=1 j=1

2C

S + S2. Let c > 0, and choose .Mo large enough that if .l > Alo, then 2 < c.

C1 < and <. For Al > A.o

2Of 2 C

S 2  2 g,(s)ds. < C.

iEA'N 2

Let \A = {1. . n} and suppose s E [0',0]. Then for some i E A , s < _

which implies that e\t < .\s C so 0 << es - e: "1 < .'(t Aox'i) < .

But. t' = - , which implies

- 17(1 + offA)-' J7 e~- xJ-J (1 +aSA-

3----1 j=1<~~~~ (i--b  ) ,Aot

e, + 0) A

Now, C' (I + ," - (Aon') for some , between 0 and oJA. Set a=
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(I + Ac"') and 1)- = , (-\I) Then

\0Afff (li oc"A) -Ile = 1 fa, -fJ(a + b)
=1J=1 J=1 J=1

By induction, H- a - H (a3 + b3) - bj H- (ak + bk) F- al. Thus,
3=1 3=1 ]=I k=j+l 1=1

+1 ) .- ,

sHH-< eC' H (1H

2"2

3=1 ]= I 1'--- + 1 1---1

--. _ -\r < O A " ) 
2  

C
'\ r ( Ar ) 2 C"

< ' Z(Ao,'" <
T-8 F 2 - - 21 (1 s +/ 2(I1 , u on

since As rearkId av e have o to % es h o of heoe < 3.1. Hence.
k=j+ 1 1=1 k= 3 + 1 1= 1

-1 \S A t-"

< ., gsds=e 9,(s)ds.
Af--r

I We are now ready to prove the main result of this section.

TttEOREm 3.8. For all z E Z. "A.1'Aft r \v'% Z 4(t)-- as .N, M D:c, uniformly on

bounded t-intervals.

PROOF: Aks remarked above, we have only to establish (112) of Theorem 3.1. Fur-

thermore, it is sufficient to show that x"" , x. If we define the bilinear forms

/(1.) or \ by p( X I. a'2 ) - \, (j- ' x .j' 2)y + OA (X1 . '2 ).V (it is easy to verify

that p(x 1..r2 ) = (.(.).r1..r2)y if x,1  E D(A)). and pA1(.,.) on V-" by t"(x1 .x,)
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KNAf(A)xl ,j-'x2 )1,, then for X1, X2 E .- ,

111jY (x1 ,x 2 ) - I(XI, X2) (j0  g(s) 0, - C (A, s)l ds I I X 2I.IX . (3.14)
- r

and for x E XA ,

l(x,x) A 2 -1 + A IIxH2  (3.1.5)

By (3.5). we have for all u E X,

j,(x. i) = K '+ Aj - ..'.-". ir/ / )
+ 0, J g1 0 (Al - D)-1 (;- h(s))ds. ,

Ir

and by (3.,2), for all w" E

11 ( x + Aj-x N . . iv- +.A

+ f ( o jg(s) (Al - D"N')' (.N - h'"'N(s)) ds.j-'u')

Let 7"v = P.x. Then, taking t= = i x' - x\' in the above two equations. we get

M(, A _ x'. 7-. X )

<_ 2( ' - xK - XN )I + IpU (X, V - - U(x, ' - X );

1' - I II -ll l. " '* I .I I IJ ll 1 -, lx Ily" - IX 'l
+ ~' -~ ~j'f - ~ . + A 11i 1 fly Nj

fo
+ 9go(s) (Al - D-'(; - h)

(Al - D ."I)-p r ,  - h) ds - 1Ajj"ll.

If we set ck i (7 + g(s) '(A, s)d, then by Lenmna 3.7. a > 0 for i large

enough. Estimating the right-hand side of the above equation and using (3.14) and
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from (3.15) the fact that o\ -\ I 2 < /I (f X N , 5: -
X N ) , we get

< [ Ij-i! 2  o) ' (A2 -112 + ( .(S) A _ CAI(A;) :IxIIx
OA r

+ -l 1' - + AllJ -' I  - II.+ Y go(s)ds) 2

(Al - Dy'(; - ,) - (A - --f 0

as N,.1 A! -- )c by Lemmas 3.6 and] :3 -. so x - X'\ K1V--. 0 as N, Al-*1c1

We are iterested in applying this approxiIlation scheme to the optimal LQR prob-

lem. but it is well known that convergence of the forward problem (i.e., Theorem

3.8) is not sufficient to ensure convergence of the gain functionals (see [G], [BIP]).

Convergence of the adjoint semigroups as well as other properties (uniform stabiliz-

ability. etc.) play a central role in the development of convergent methods for LQR

problems. If g(.) E L2 (-r. 0) then Z can be re-norlned by using the weight c(s) 1-

in place of 9(s). If Z denotes the resulting equivalent space, one can establish the

following adjoint convergence (see [NI] for a proof).

TH EOREM 3.9. If g(s) C L2 (-r. 0). then for each z G Z,.

c['" z - S(t)z as N, 1f

Moreover, this convergence is uniform on bounded t-intervals.

Recently, XK. Ito has announced [I a proof of this result that does not require the

additional assumption that g(-) C L 2(--r,0). In general, the question of preservation
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of stabilizability uniformly under these approximations is not answered. However, for

certain special forms of g(') and for problems with additional damping terms (Kelvin-

Voigt), one can establish uniform stabilizability. More will be said about this problem

in the next section.

4. Numerical Results. We turn now to an optimal control problem governed by

the basic thermo-elastic equations with viscoelastic and IKelvin-Voigt damping terms.

For a rod of length 1 the equations of motion become

a2  a) a0 a a2 1

= Y~ ~ [(A + 2pt) !j (t . -) + -~g(s) y(t + s, x)ds - 3aa y(t. Xr)

- o(:3\ + 2 p)O0(t,x) + b(x)u(t) (4.1)

a a2 0( -__

pc-0(t. ) = -20(, x) - 00 ((3A + 2p,) - (t, X) (4.2)at OX2  
- atX

Sa
where for 0 < 3 < +x. the teim 3  t6Py(t.) provides Ielvin-Voigt damping. If

,3 = 0 and g(s) 0. then (4.1) - (4.2) become the classical equations of thermo-

elasticity. If g(s) $ 0 satisifies Hypothesis 2.3, then the integral term provides a type

of "viscoelastic damping"' to the system.

Gibson. Rosen and Tau [GRT] considered the problem with g(s) - 0 and with

Dirichlet boundary conditions on displacement and Neumann boundary conditions

on the temperature. In this case it can be shown that the thermo-elastic model (i.e.,

3 = 0 and g(s) - 0) has zero as an exponentially stable equilibrium, provided of

course that one subtracts out the constant temperature distribution. Moreover, the

elastic and thermal modes decouple. and one can use modal expansions in analyzing
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this systeiii. Therefore, if 3 = 0 and g(s) = 0, then (4.1) - (4.2) with Dirichlet-

Neunann boundary conditions is exponentially stabilizabl, (again, after "'subtract-

ing' the constant temperature states), and the standard LQR control problem has a

unique solution. The same clearly holds for the corresponding systems with '3 :$ 0

and q(s) 5 0.

\We shall consider the more complex problem governed by (41.1 (4.2) with Dirichlet

boundarv condilions on displacenient and temlperature. In particular, we impose the

boundary conditions

y(t.0) y (t. 1) 0 z 0(L.0) = 0(1,1). (4.3)

If 3 > 0, then (4.1) - (4.3) is exponentially stable. If 3 = 0 and g(s) satisfies the

basic assumptions in Section 2 wit ii

co (A + 2tp) + - 0 g(s)ds > 0, (4.4)
b r

then it is known that (4.1) - (4.3) has zero as a globally asymptotically stable equi-

librium (see [W.pp. 203-210]). It is important to observe that, in general, results of

this type do not extend to problems in two or more space dimensions. If 3 0 then

it is still not known if (4.1) - (-1.3) is exponentially stable. There are positive results

for infinite delay problems with completely monotone kernels _(') (see [HW]).

Recently Hanson [H] has shown that for 3 = 0 and g(s) = 0, the open loop

eigenvalues of (..11) -- (.1.2) are bounded away from tle imaginary axis. However, the

eigenfunctions for this problem do not form a fliesz basis for the natural state space,
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and hence the question of exponential st'L)ilitN remains unresolved.

These theoretical issues can have considerable impact on comi putational algorithi ms

and need "to be addressed in order to complete the convergence theory for control

applications. Some progress has been made for the thermo- viscoelastic problem with

kernels of the form

()= (4..)

for q > 0. p > 0 (see I . although no results exist for the classical thermo-elastic

model .3 = 0. y(s,) 0. In summary, if .3 > 0 or y(-) has the form (4.5) with

(4.4) satisfied, then (4.1) - (4.1) is exponentially stable (hence stabilizable). an(d if

.3=0 g(,),it is not known if (4.1) - (.1.3 is stabilizable.

We shall present several numerical experi ments for LQR control of (4.1) - (4.3)

with various values of .3 and b when g(-) is given by (4.5). The numerical constants

are chosen to be the same as used in 'GRTj for an aluminum rod of length 1. In

particular.

p =9.S2 x 10- 2. A =2.06 x 10'.

,U = 1.11 X 10- , a = 1.29 x 10- 3.

c = 5.40 x 10- 1 = T7.02 x 10- 7.

00 =o 68,. q = 3 0.

p l. r=1.

Observe that for these values. the constant -, =(3A+2pi) takes the value 1.0S5x 10- 3

and hence the coupling between (2.1) - (2.2) is small." Note also that the kernel
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(4.5) has a weak singularity at s = 0. We selected constants ;3 = 1.8 x 10- 7 and

b = 6.0 x 104 so that the first elastic mode has open-loop damping of the same order

of magnitude as the classical thermo-elastic model. The control input function b(x)

is given by

1, .4 < x < .435;
b(x)

0, elsewhere,

and is the same as used in [GRT].

The LQR problem for the system (4.1) - (4.3) is to choose a control function uo(t)

to minimize

j = [E2 (t) + u2(t)] dt (4.6)

where E(t) is defined by

2 1 1 :1 [0(t. X)12dX1/
E(t) { [y(tx)] dx + co(,) d[a+ J,

(4.7)

and y(t, x), O(t. x) is the solution to (4.1) - (4.3) with initial data

Y (0. X) =YO(W) ( 0 X) =vo(x), -(O,X ) = To(x) (4.s)

y(0,X) - y(s,X) = w0(s, x).

For 9(s) defined by (4.5) and b > 0 such that (4.4) holds, there exists a unique

optimal control law in feedback form

UO(t) = (o dA',(x)-a y(tx)dx + p A'2 (X-t(t x)dr +  j l' 3 (x)O(t,x)dx

1 Jo js ) a [ (S ,X) - a y(t + S x) g(s)dxds. (4.9)
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If g(s) = 0 and 3 > 0, then again there exists a unique optimal control law in

feedback form (4.9) with 9(s) = 0 = (s, ar). If 3 = 0 and 9(s) = 0. then the

most one can say is that if an optimal control exists, then it will have the form (4.9)

with g(s) = 0 = I' 4 (.Sr). The existence of the optimal control has not vet been

established. We had hoped that the numerical results presented below would shed

some light on this question. However, as xil become evident from these numerical

experiments, we seem to have raised more questions than wre have answered.

The objective of the com)utational scheme is to produce numerical approximations

of the optimal functional gains Ki('). K 2(.), A'(') and A4('.-). In particular, the

general idea is to introduce an approximation method (such as in Section 3), and

then to use this method to compute approximating (sub-optimal) gains K,'(.), A'v(.),

K-v(.) and KN (-,.), The basic questions are i) Do the optimal gains exist? and ii)

Does the particular approximation scheme lead to convergence of the sub-optimal

gains; i.e.., does K'(.) -+ A() i = 1,2.3.4 as N --+ oc?

The computational results presented below are based on the numerical approxima-

tion scheme presented in Section 3. \We used the non-uniform mesh as described by

Example 3.3 for the thermo-viscoelastic model. In particular, all runs presented below

were based on Al = 8 subdivisions of [-1,0], and the corresponding approximating

finite dimensional system becomes

)"(t) = 8  () + -v-su(t) (4.10)
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whereB - and b' R - Z is defined Lv Ba ((, ,(x)l,0,0)T. The results

are the same for M = 16 sub-divisions of [-1,0] (a nice feature of the non-uniform

mesh algorithm).

In the cases where i) holds, Theorems 3.S and 3.9 imply convergence of the func-

tional gains provided one can establish that this scheme preserves stabilizability uni-

formly in N (see [G]). For the thermo-viscoclastic model with g(') given by (4.5) and

the thermo-elastic model with 3 > 0. preservation of stabilizability can be shown.

In order to see the effect of the damping models on the open-loop system, in Figure

1 we plot the open-loop poles for the first S elastic modes using only thermal damping

(i.e., 3 = 0, g(s) = 0). thermo-viscoelastic damping (.3 0, g(.s) given by (4.5) and

b = 6.0 x 10') and Ielvin-Voigt damping (3 = 1.S x 10-7), respectively. Observe

that the damping is extremely small in all three cases. On the other hand, Table I

shows that at the higher frequencies the damping provided by the thermo-viscoelastic

model is an order of magnitude more than the thermo-elastic model, and the damping

predicted by the Kelvin-Voigt model is two orders of magnitude greater than the

thermo-elastic model.
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Elastic Thermo- Elast ic TlicrI' eo-\iscoelast ic IKelvin-Voigt
Mode 3 = 0g(s) b = 6.0 x 104  3 = 1.S x 10 - 7

1 -0.0000054 + 6.5Si -0.0000091 + 6.58i -0.0000093 + 6.58i

2 -0.0000060 + 13.17i -0.00001S4 + 13.17i -0.0000216 + 13.17i

3 -0.0000071 + 19.79i -0.0000325 + 19.79i -0.0000423 + 19.79i

-4 -0.00000S6 + 26.417i -0.0000501 + 26.47i -0.0000715 + 26.47i

-0.0000106 -1 33.20i -0.0000699 + :33.20i -0.0001095 + 33.20i

6 -0.0000129 +- 40.02i -0.0000905 + 40.02i -0.0001566 + 40.02i

7 -0.0000157 + 46.931 -0.0001113 + -16.93i -0.0002133 + 46.93i

S -0.00001S9 + .53.951 -0.0001:317 + 53.95i -0.0002800 + 53.95i

9 -0.0000224 + 61.10i -0.0001514 + 61.10i -0.0003574 + 61.10i

10 -0.0000263 + 6S.39i -0.0001705 + 68.39i -0.0004460 + 6S.39i

1.5 -0.0000491 + 107.51 -0.0002565 + 107.5' -0.0010S66 + 107.5i

20 -0.0000662 + 1.51.5i -0.00032-57 + 151.5i -0.0021294 + 151.5i

TABLE 1. OPEN LOOP POLES: SMALL DAMPING

We also considered cases where b = 6.0 x 102, b 6.0 x 101 and 3 = 1.8 x 10- ',

3 = 1.8 x 10'. The models with 3 = 0 and b 6.0 x 102 and 3 = 1.8 x 10- 4.

g(s) = 0 show considerable increases in open-loop damping (especially at the higher

modes) as illustrated in Table 2.
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Elastic Thermo- Elastic Tlermo- Viscoelastic lelvin-Voigt
Mode 3 = 0=g) b =6.0 x 10 3= 1.8 x 10- 5

1 -0.0000054 + 6.58i -0.0003S12 + 6.57i -0.000393-1 + 6.58i

2 -0.0000060 + 13.17i -0.00123SS + 13.16i -0.001.5617 + 13.17i

3 -0.0000071 + 19.79i -0.0025453 + 19.78i -0.0035214 + 19.79i

4 -0.00000S6 + 26.4 7i -0.0041601 + 26.45i -0.0062913 + 26.472

-0.0000106 + 33.20i -0.0059423 + 33.19i -0.009S9S2 + 33.20i

6 -0.0000129 + 40.02i -0.0077757 + 40.00i -0.014376S + 40.02i

-0.0000157 + 46.93i -0.009.5789 + .16.91i -0.0197699 + 46.93i

S -0.0000189 + .53.95i -0.0113034 + 53.93i -0.0261290 + 53.95j

9 -0.0000224 + 61.10i -0.0129269 + 61.0Si -0.0335142 + 61.10i

10 -0.000026:3 + GS.39i -0.0144449 + 68.37i -0.0419944 + 68.39i

15 -0.0000491 + 107.51' -0.0207916 + 107..3i -0.1038004 + 107.5i

20 -0.0000662 + 151.5 -0.026022S + 151.5 i -0.2063S17 + 151.5i

TABLE 2. OPEN LOOP POLES: MEDIUM DAMPING

The LQR problem for the approximating system (4.10) is solved (by Potter's

method) and approximating functional gains K-
"'(-), A'x(.), (3.) and 4 . are

constructed by the standard Galerkin scheme (see [M] for details). Convergence of

these sub-optimal functional gains as AV -+ Dc to the optimal gains can be established

for 3 > 0 and g(s) = 0 by methods similar to those in [G]. If g(s) is defined by (4.5),

then this convergence can be established by a modification of Ito's recent results [I].

Nothing is known about the classical therino-elastic problem. \Ve treat this problem

numerically.

Example 4.1. In this problem we set g(s) = 0 = 3 and compute the gains Ki'(.),
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K~N(.) and K '(). Note that the finite dimensional system (4.10) is exponentially

stable (all open-loop poles are in the left half plane) so that these sub-optimal func-

tional gains do exist. Figures 2, 3 and 4 contain the plots of A'K;'(.), i = 1,2,3 for

N = 24, 28, 32 and 36. Although these plots are similar to those found in [GRT],

and for the boundary conditions in [GRT] one can prove convergence of the gains,

it is not clear from Figures 3 - 4 that these gains are converging. We will return to

this issue later.

Example 4.2. In this problem we consider the thermo-viscoelastic problem defined

bv , = 0 and b = 6.0 x 101, b = 6.0 x 1W>. Figures 5. 6 and 7 contain the plots of

K'(.), i 1.2,3 for A" = 24, 28, 32 and 36 where b 6.0 x 101. Figures 8, 9 and

10 contain the same plots for b = 6.0 x 102. Observe three important features: )

For b = 6.0 x 101 the system is more heavily damped than for b = 6.0 x 102: ii) the

functional gains for the case b = 6.0 x 101 are smoother than for b = 6.0 x 102: and

iii) the convergence of the functional gains is faster in the problem with the most

open-loop damping. The plots of A,(., .) for b = 6.0 x 10' and A' = 24, 28, 32 and

36 are shown in Figures 11 - 14. Note that these gains converge rather rapidly. This

was typical of all the thermo-viscoelastic runs.

Example 4.3. In this problem we consider only the thermo-elastic model with

Kelvin-Voigt damping so that g(s) = 0 and 3 = 1.8 x 10- 4 and 2 = 1.8 x 10'.

Figures 15. 16 and 17 contain tlie plots of K,""'(.). i = 1. 23 for A' = 24, 28. 32 and 36
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for .3 = 1.S x 10', and Figures 18, 19 and 20 show the same plots for ,3 = 1.8 x 10- 5.

Observe that as in Example 4.2 above, the damping affects t lie smoothness and rate of

convergence of the functional gains. Also note that when 3 = 1.8 x 10- the first elas-

tic mode has the same damping factor (i.e., open-loop pole is -0.00039 + 6.58) as the

problem in Example 4.2 with b = 6.0 x 102 (i.e.. open-loop pole is -0.00038 + 6..58i).

Figures 21, 22 and 23 contain the plots of IV'3(.) for the thermo-elastic and thermo-

viscoelastic models and the thlierio-clastic model with lEelvin-Voigt damping for var-

ious values of b and 3. The functional gains for the thermo-viscoelastic problem

"'converge" to the functional ,aiiis for the thermo-elastic problem as b -- , c. The

same convergence applies as the ,elvir-\oigt parameter 3 ---+ 0. As illustrated in

Figure 23. the functional gain A"' 2(.) computed by using the thermo-elastic model is

the same as the gain computed by using the same model with Kelvin-Voigt damping

parameter 3 = 1.8 x 10-
7. Likewise. if b 6 6.0 x 104 in the thermo-viscoelastic model.

then the functional gain K"-2(.) is also identical to the gain computed by using the

thermo-elastic model. This "basic" observation applies to A32(.) for i = 1,2,3 and for

K64(.) also. In particular. as shown in Figure 24, the functional gain K 4(.) computed

from the thermno-elastic model is renmarkablv close to the functional gain computed by

adding I'Nelvin-Voigt damping. Although convergence of the functional gains for the

thermo-elastic model with lKelvin-\'oigt damping is assured by theory, Figures 23 and

21 illustrate that this convergence can be extremely slow if the damping parameter

3 is small.
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Figures 23 and 21 also raise the possibility that even in the thermo-elastic problem

(no structural damping) where there is no proof of convergence, the gains might

converge if N is sufficiently large. The jagged nature of Ki.) occurs because of the

small damping. Moreover. comparing the open-loop and closed-loop poles. one sees

that the optimal feedback law introduces considerable damping at all frequencies.

Figure 25 compares the first S open-loop poles (+) to the closed-loop poles (*) for

the thermo-elastic model. It is interesting to note that the same )attern holds for

all of the higher poles (see Table 3 below), and the thermal damping alone does not

appear to be a major aid in controlling the higher modes.

Mode Open-Loop Closed-Loop

1 -0.0000054 + 6.5Si -0.1078901 + 6.5Si

2 -0.0000060 + 13.17i -0.0552142 + 13.17i

3 -0.0000071 + 19.79i -0.0792251 + 19.79i

4 -0.0000086 + 26.47i -0.09,53868 + 26.47i

5 -0.0000106 + 33.20i -0.0298920 + 33.20i

6 -0.0000129 + 40.02i -0.1097076 + 40.02i

7 -0.0000157 + 46.93i -0.0264249 + 46.93i

8 -0.00001S9 + .53.9 5' -0.0946583 + 53.95'

9 -0.0000224 + 61.10i -0.0742450 + 61.10i

10 -0.000026:3 + 68.39' -0.0549,.5.5 + 68.39i

1.5 -0.0000-91 + 107..5i -0.0707290 + 107.5i

20 -0.0000662 + 151.5i -0.0731157 + 151.5Z

TABLE 3. OPEN-LOOP VS. CLOSED-LOOP POLES

T"IERMO-ELASTIC MODEl,
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As illustrated by Figures 26 and 27, the first S closed-loop poles for the moderately

damped (lKelvin-Voigt) therio-elastic and the therino-viscoclastic models are essen-

tiallv the same as the corresponding closed-loop poles for the thernio-elastic model.

In view of these numerical results, we first conjectured that although no theoretical

results exist to prove the existence of the optimal feedback gain for the classical

thermo-elastic model (with boundary conditions (4.3)), existence and convergence of

the suboptimal gains do hold. Si:ice the damping for the realistic model is so small.

the numerical evidence provided by the previous plots is not strong. In order to test

this conjecture we investigated the convergence of the gains for the problem with

--artificial" parameters. In particular, we considered tHe equa ions in dimensiona]less

form

--2y(t,x) 
- 7-O(t.) + b(x)u(t)

a~t X)C 2 2 a82
;) = cb-y O(. X) - C I y(tX)

with b(z) as above and c2 
= -7 = 1.0. The uncontrolled system has considerable damp-

ing. The first two elastic modes have eigenvalues -. 0939 + 3.15i and -. 4066 + 6.47i,

respectively. The functional gains for this set of parameters are slightly smoother

than the corresponding gains for the aluminum rod. Figures 28, 29 and 30 show the

"convergence" of these gains for N = 21,28,32 and 36. It appears that the scheme

may produce convergent gains (at least for K-i(.) and K"" (.)): however, the behaviour

of K'(.) is not clear-cut. Basc-d on our numerical experience, we do conjecture that
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the classical t hermo-elast ic modcl with Djiriclilct 1)oundary conditions is in fact st abi-

lizalble. Howexvr, we also conjectunrc that lie comutat ion al scheme does riot pr-oduce

conver~gent gains (we believe that t his scheme dloes niot p)esri-e st abilizability uni-

formnly). We have niot been able to provide proofs of these conjectur-es. and we leave

themn as open pi~obl('ifl.
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Opcn Loop Eigcnvalucs, N = 32
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K2, Thernioclastic. N =24. 28, 32. an1d 36
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K3, Thennoclastic. N =24. 28. 32. and 36
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x 10.3 K 1, Ticino-Viscoclistic. b =60, N 24, 28. 32 and 36
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K2. Thcimo-Viscociastic, 1)= 60, N =24, 28, 32 ind 36
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K3, Thicrmo-Viscoclastic, b =60. N =24, 28. 32 and 36
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K2, Thcrnio-Viscock asic, b 600, N 24. 28, 32 and 36
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K.N*24, b 0
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K I, Kclvin-Voi Damnping, bcta I.Sc-4. N =24, 28. 32, and 36
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K2, Kclvin-Voigt Damping, bcta I .Sc-4, N = 24, 28, 32, and 36
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K3, Kelvin-Voigt Damping, beta = 1.8c-4, N = 24, 28, 32, and 36
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K 1, Kcvin-Voigt Damping, beta = 1.8c-5, N 2 4, 28, 32, and 36
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K2, Kclvin-Vuigt Dimping, bcta = I.8c-5, N 24, 28, 32, and 36
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K3, Kclvin-Voigt Damping, bcta = I.Sc-5, N = 24, 28, 32, and 36
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K 1. N 32. b 00. betai 1.8c
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KI., N =32. b =60000, bc~a =1. 8c-7
0.015-0.01L

0 //V

-0.01~

-0015F
-0.021

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.s 0.9

Figmev 23

K 1, N =64. bCin = .Sc-7
0.015,

0.01

0.005.

-0.05

-0.015

-0.0l2r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.s 0.9

ui'in .



Opcn vs. Closcd Loop, N = 32, Thcrmoclastic
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Opcn vs. Closcd Loop. N = 32, Thermo-Viscoclastic, b 600
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Opcn vs. Closcd Loop, N = 32. Kclvin-Voigt Damping, bcta = 1.8c-5
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K2, Gamma= 1 .0, N =24, 28. 32 and 36
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K3. GJamma= 1.0, N =24, 28, 32 and 36
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